Reconnecting People and Forests
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Urban Forests

Scaling Urban and Community Wood in Memphis

From Trash to Treasure

© Photo by #forestproud

In November 2023, Memphis Urban Wood Academy participants focused on what makes urban and community wood uniquely scalable in Tennessee. The event took place at the heart of the Memphis Botanical Gardens and was full of dedicated practitioners working on solutions to divert urban and community wood from the waste stream into circular, regional bio-economies.

 What to Do with Woody Waste

Regional variation in geography, tree species, natural disasters, and the wildland-urban interfaces add complexity to forest management across the nation; in urban and community settings, the social, cultural, and legal dynamics add additional complexity to the question of what to do with wood waste. Finding viable solutions to this problem was at the heart of the November 2023 meeting of the Memphis Urban Wood Academy.

Charlie Becker, USDA Forest Service (Forest Service), discussed the importance of municipal tree inventories and canopy assessments to determine how much wood will be generated in the future in the face of aging, diseased, and damaged trees and trends in storm damage and debris distribution. Ashley Kite-Rowland, Tennessee’s urban and community forestry coordinator, emphasized the need to develop urban wood management plans in partnership with solid waste departments and emergency response strike teams as well as local arborists and businesses.

Making Urban and Community Wood Profitable

Local impact and collaboration are at the core of urban and community wood’s potential. Participants toured the pilot site in the Klondike neighborhood where the Memphis Urban Wood Project, an initiative aimed at building a zero-waste urban tree site, is ramping up. This pilot site plans to accept fallen wood from local arborists and in the future, it may also accept storm debris as part of an emergency management post-disaster response. Local staff, hired at far above the annual median neighborhood income of $15,000, will help sort and process the wood and woody debris into the most viable products for resale. At a minimum, this includes lumber, wood slabs, and compost production. This work will be done on-site as a regional processing hub with a zero-waste goal and revenue generating model.

The Memphis Urban Wood Project is a combined effort of the Urban Wood Economy, Inc., and The Works, Inc. Roshun Austin, CEO and President of The Works, Inc., emphasized the need to build relationships with business owners, companies, entrepreneurs, local nonprofits, government organizations, and community members. Workforce development is a key element of this scaled model. It requires investment in local economies and individuals by offering wrap-around workforce development and training to a workforce that has not historically had an on-ramp to the forestry sector.

"If we're going to rebuild neighborhoods, what better way than to use what's already there?" - Roshun Austin; The Works, Inc.

By scaling and piloting different models to connect urban and community wood with viable markets, the wider forestry sector can lead with purpose and commitment to advance climate action and social equity. In the words of Jeff Carroll, the CEO and co-founder of the Urban Wood Economy, Inc., “urban wood is an opportunity, not just a commodity.”

A huge “thank you!” for the leadership and funding support the Forest Service and Cal Fire invested in the last two Urban and Community Wood Academies.  The efforts of Urban Wood Economy, Inc. (organizer) and dozens of wood utilization experts and advocates were central to the Academy experiences and inspirations.

 

Rae Tamblyn is the associate director of #forestproud at the Society of American Foresters. Jen Judd is the director of partnerships and outreach for Urban Wood Economy, Inc. This article was originally written for and appears in the Society of American Foresters Forestry Source, April 2024. 

New to the urban forestry conversation? Check out our series on what the urban forests is, why it matters, why we measure it, and why we are #forestproud to see it grow.

 

Unfamiliar with the urban wood conversation? Check out our series on what urban wood is, why it matters, and what we are doing to turn waste to wealth, trash to treasure.

 

Take a Deep Dive! In December 2022, the CA Urban Wood Academy was held but space was limited. The range of topics and expertise at the Academy was so valuable that CAL FIRE and the USDA Forest Service provided funding to capture the educational highlights. We're pleased to share a full 6.5 hours of FREE high-quality educational content, cut down and packaged into a virtual workshop learning experience via a series of presentations, hosted on SAF ForestEd. This workshop lecture series offers the opportunity to earn 5.5 SAF and ISA continuing education credits. This free virtual workshop is for anyone looking to build or refresh knowledge around urban wood utilization and how the wood product supply chain is key to making significant environmental, social and economic impacts on communities of all sizes. The information presented here ties together urban and community forest management, plans for reducing tree waste, scaling up urban wood utilization and production, creating zero-waste biomass campuses, and connecting to the demand-side of the marketplace.

Reimagining Our Cities
Urban Forests

RECLAIMED | The Urban Wood Project

The Urban Wood Project began as a quest to reclaim wood from abandoned city homes. It very quickly became about so much more.

Watch this next
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Cities, Forest Products, Mass Timber

Carbon in the Built Environment

Managing for Carbon Across the Entire Forest Supply Chain

Harvested wood products are a critical tool for mitigating climate change and building a sustainable future. Understanding how to optimize the role of forests and forest products requires knowing the factors contributing to carbon flux and how to balance them.

Approximately 50% of the dry weight of a tree is carbon. Trees sequester carbon from the atmosphere and store it as they grow, making forests important for mitigating climate change. Critically, carbon is also be stored outside of forests in wood products made from trees that allow us to meet human needs while storing the carbon sequestered by trees in long-lived products.

The Food and Agriculture Organization estimates that using wood-based building materials instead of other alternative building materials already avoids emissions of 483 million metric tons of CO2 annually—that’s equivalent to the annual emissions of over 100 million cars. In its recent assessments, the International Panel on Climate Change identified harvested wood products (HWPs) as an essential tool for sustainability.

How is it that removing trees from a forest can benefit the climate? Consider the idea of substitution, or the benefits of using renewable materials in place of nonrenewables.

The construction sector currently accounts for nearly 40% of global emissions. The global population is increasing and the total number of buildings worldwide is expected to double by 2060. If development is inevitable, renewable products are essential. Research shows that choosing to build with wood instead of concrete or steel could reduce projected emissions by 9%-50%. Unlike carbon and steel, HWPs take the carbon absorbed from the atmosphere by trees and places it into long-term storage. Then, more trees grow in the newly opened space in the forest, creating a compounding effect for carbon storage.

Managing forests can also help mitigate the emissions from tree mortality. Threats like wildfire and disease are endangering our forests, and using science-based management can help create forest structures that are more resilient to these threats.

When obtained by science-based, responsible forest management, HWPs provide:

  • a more sustainable substitute for nonrenewable materials with higher emissions.
  • an opportunity to create resilient forests less susceptible to mortality.
  • an important solution to keeping forests as forests.

We're #forestproud to showcase the newest SAF position statement on Carbon in the Built Environment. This position statement focuses on the capacity for harvested wood products (HWPs) to mitigate climate change through science-based, sustainable forest management. 

 

Climate Tech
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Mass Timber

Mass Timber + Affordable Housing

As our cities continue to grow, so do the challenges they face. Reimagine the way society lives, works, and plays by moving our cities from climate problems, to climate solutions.

Read this next
Reconnecting People and Forests
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Urban Forests

Urban Wood Utilization

From Trash to Treasure

© Photo by #forestproud

In a given year, an estimated 15 - 30 million tons of urban wood is wasted across the country, ending up in landfills, releasing carbon back into the atmosphere as the wood rots slowly away.

But it doesn’t have to be that way.

At its core, urban and community wood utilization diverts wood from waste streams and landfills, creating value, driving new markets, generating employment opportunities, and storing carbon in wood destined for landfills. The wood comes from two main streams: 1) fresh cut and recovered from trees coming down in urban and community areas and 2) wood salvaged from building deconstruction.

Let's talk about that first stream of wood waste.

Planting and maintaining trees is an essential part of growing a climate-resilient city. Trees shade our streets and homes, reducing our energy costs and providing shade and cool spots in our increasingly hot urban spaces; they filter our air, clean our water, and provide beauty and a renewed sense of connection to nature. As they grow, trees continually store carbon, locking it away from the atmosphere.

 

No matter how you look at it, urban forests are collectively a living climate solution to today’s climate crisis.

But, as we plant more trees and grow our urban and community forests to meet today’s needs, there will inevitably come tomorrow’s question: What will we do with the trees when they come down? And they will come down, in whole or in part, from natural disasters, pests and disease, drought, new construction, homeowner maintenance, utility line needs, or old age.

Urban wood utilization began with a goal to explore new uses for urban wood waste but is quickly growing into a holistic means to drive a circular, bio-based urban economy that addresses complex ecological, economic, and social challenges across the country.

 

Recovering and reclaiming wood waste helps us build and grow local wood economies, create jobs, store carbon, and position cities to achieve sustainability and climate resiliency goals. Each new product and business built around urban wood creates a story and product that connects trees in our communities to homes and people in a tangible way. It drives community and employment revitalization and reduces wood waste, all while reimagining our cities—and our urban wood streams—as opportunities for innovation and climate solutions.

The urban wood movement is here to stay, and we’re #forestproud to see it grow.

__

 

New to the urban forestry conversation? Check out our series on what the urban forests is, why it matters, why we measure it, and why we are #forestproud to see it grow.

 

Take a Deep Dive! In December 2022, the CA Urban Wood Academy was held but space was limited. The range of topics and expertise at the Academy was so valuable that CAL FIRE and the USDA Forest Service provided funding to capture the educational highlights. We're pleased to share a full 6.5 hours of FREE high-quality educational content, cut down and packaged into a virtual workshop learning experience via a series of presentations, hosted on SAF ForestEd. This workshop lecture series offers the opportunity to earn 5.5 SAF and ISA continuing education credits. This free virtual workshop is for anyone looking to build or refresh knowledge around urban wood utilization and how the wood product supply chain is key to making significant environmental, social and economic impacts on communities of all sizes. The information presented here ties together urban and community forest management, plans for reducing tree waste, scaling up urban wood utilization and production, creating zero-waste biomass campuses, and connecting to the demand-side of the marketplace.

Reimagining Our Cities
Urban Forests

RECLAIMED | The Urban Wood Project

The Urban Wood Project began as a quest to reclaim wood from abandoned city homes. It very quickly became about so much more.

Watch this next
Rethinking Our Carbon Future
Wildfire
Carbon + Climate Change, Fire, Forest Management

Fighting Fire with Fire

Wildfires & Prescribed Burning

Since pre-historic times, fire has played a role in shaping North America’s forests, removing dead and unhealthy trees, fostering new growth, and returning important nutrients to the soil. We sometimes refer to forests that have evolved with fire as "fire-dependent" forests.

As our populations grew, there were more people living in and among forests, creating what we now call the “wildland urban interface” aka WUI (pronounced: “woo-wee.”) For the better part of the last century, we actively suppressed natural fire cycles to protect Americans’ homes and communities. Today, as a direct result, natural fire cycles have essentially been eliminated, and our forests have become unnaturally dense and packed with fuel for wildfires to burn.

Over 90% of wildfires are human caused (insert #forestproud friend Smokey Bear's voice: #onlyyou), and some of them, fueled by this buildup up of dead dry and thick undergrowth, can grow to become catastrophic, threatening lives, communities, natural resources, and public infrastructure.

We know you’ve noticed it, too: in the wrong place at the wrong time, fire can spell big problems. Catastrophic wildfires have the power to turn our forests from carbon sinks into carbon sources. Wildfires generally produce really bad smoke, and, based on the latest research, that smoke will only get worse.

Unfortunately, throughout North America, there is no longer a "wildfire season" (the time of year when fires are most likely to spark and burn) but rather a “fire year.” Made worse by the changing climate, the US now battles wildfire year-round, with some regions experiencing over 300 days a year of fire risk.

 

The practice of prescribed burning is a crucial forest management tool for combating wildfires in many areas of the US. In fact, for thousands of years, Indigenous communities have used controlled burns to emulate a more natural fire cycle.

What is Prescribed Fire?

Not all fire is bad. Prescribed burning is a forest management practice that involves intentionally setting fires under controlled conditions. (Setting a small fire on purpose can also be referred to as Rx Fire, good fire, or a controlled burn.) These fires are carefully planned and executed to reduce the amount of fuel, such as dead wood, trees, and dry debris, on the forest floor, which, when left unburned, build up over time to become a major source of fuel for wildfires.

In the right place at the right time, Rx fire creates environmental benefits, such as reducing grass and brush species that fuel wildfires, improving habitats for wildlife, and returning nutrients to the soil. Prescribed burning also helps to promote new vegetation growth and create natural “fire breaks” that slow the spread of wildfires by reducing access to flammable fuel. (It’s worth noting that while prescribed fires produce some smoke, the smoke is significantly different than the wildfire smoke levels.)

Relearning Prescribed Burning

Unfortunately, only a fraction of the land in the US that could benefit from controlled burns is actually treated with Rx fire. This is due to a variety of factors, including funding constraints, liability considerations, and concerns about air quality and public safety. The consequences are clear, though: when wildfires do occur, they are more intense and difficult to control. This vicious cycle will continue unless we take action to address the root causes of the problem.

Recently, there's been a big push to: 1) incorporate traditional ecological knowledge into fire science, 2) increase the use of controlled burns as part of regular forest management activities and 3) invest in a coordinated effort to reduce catastrophic wildfire risk. Last year, the US Forest Service published a 10-year plan to confront and combat the wildfire crisis with more controlled burns and support for fire crews across the nation.

Fighting Forest Fires with Forest Fires

So, what can we do? You can support and promote the use of prescribed burning. Instead of putting out every fire, we need to better incorporate fire into our forest management toolboxes.

There is no one-size-fits-all approach to forest stewardship. In North America, we are fortunate to have a truly diverse range of people and organizations committed to using these tools to protect the health of our forests. It includes families and businesses, conservation and non-profit organizations, government agencies, researchers, communities, and courageous wildland firefighters.

Today’s forest stewards – armed with the latest technology and best management practices – are committed to making choices that keep forests as forests. But we can’t do it alone. We need help spreading the word that we can reduce the impacts of wildfires through responsible, proactive forest management. Healthy forests are a natural climate solution.

Check out the video below to learn even more about the benefits of burning in a fire forest.

Image of fire burning among trees
Reconnecting People and Forests
Fire, Forest Management, People

Restoration in a Fire Forest: The Benefits of Burning

The Northwest Fire Science Consortium's new video showcases the role of prescribed fire.

Watch this next
Climate Tech
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Mass Timber

Mass Timber: The Future of the Workplace

Northlake Commons | A mass timber project feature

Meet Northlake Commons: the future of the workplace.

TL;DR The future of workplace is good for people and planet. This is an exciting project with huge sustainability + climate implications. This project uses an innovative, eco-friendly building material to lower the overall carbon footprint of the building. Yep, we mean wood.

__

A mass timber, multi-use commercial office building has found its home on the north shores of Lake Union. Situated on Dunn Lumber’s original lumber yard (established 1913 and still active today!), the design pays homage to the legacy of Seattle’s rich timber history, while looking to the future of wood innovations, workplace environments, and neighborhood revitalization.

By 2050, over 70% of us will live in cities. As our cities grow, so do our challenges: dependence on fossil fuels, a growing disconnect with nature, and not enough housing and infrastructure to meet the needs of a booming population.

Emissions and materials are undoubtedly some of the construction sector’s greatest challenges. According to the United Nations, the built environment accounts for 39% of gross annual carbon emissions worldwide, a figure comprising operational carbon, the ongoing carbon emissions from its day-to-day use, and embodied carbon — all the CO2 emitted in producing materials.

 

While we can’t deny the need for more housing and more spaces to live, work, and play in cities and urban centers, that’s a lot of carbon emissions and a lot of non-renewable resources pouring into new builds. We need fresh solutions that are scalable, durable, renewable, sustainable, energy-efficient, and promote well-being for people and planet.

Fortunately, we can have our construction cake and eat it too. (Weird metaphor but stay with us here.)

Using wood, we have the power to reimagine our cities one building at a time.

But why is wood key to building a greener future together?

Trees draw carbon dioxide from the atmosphere through a process called photosynthesis. This process produces various carbon-based sugars necessary for tree functioning and to make wood for growth. Every part of a tree stores carbon, from the trunks, branches, leaves, and roots.

In one year, a mature live tree can absorb more than 48 pounds of carbon dioxide, which is permanently stored in its fibers until the tree or wood experiences a physical event that releases it into the atmosphere, like fire or decomposition.

By weight, dried wood material is roughly 50% carbon.

Practicing sustainable forestry, (grow, harvest, replant, regrow ♻️ ) means that the full cycle of forests and wood products store carbon and have the greatest potential to lessen climate change impacts and keep carbon locked away in forests and wood. From constructing tall buildings to enhancing materials at the microscopic scale, wood products of any size can have big, positive environmental impacts in the fight to limit climate change.

Mass Timber is an essential product in our forest climate-solution toolbox that is helping us build better buildings, faster, and more sustainably. Mass timber - combined with light-frame construction - can deliver on value, longevity, speed of construction and flexibility. Mass timber helps us build faster and more efficiently, keeps carbon locked away, and allows us to provide homes that are good for people and planet.

This new office building will incorporate heavy timber and mass timber both indoors and out, opening onto the Burke-Gilman trail and the water beyond. The structural system is comprised of CLT panels atop glulam columns and girders, with a steel Buckling-Restrained Braced Frame lateral system. This innovative mass timber structural system has a much lighter footprint than other structural alternatives; a Life Cycle Assessment of the embodied carbon in the timber has been calculated to understand the carbon impact and emissions implications as compared to more conventional construction types.

 

Cities have long been labs for this type of innovation. So, even as our urban challenges continue to mount and grow in complexity, we are entering one of the most compelling opportunities in a generation to reimagine the way society lives, works, and plays. In transitioning our built environment from one that emits carbon to one that stores it, we are answering the needs of society for housing and infrastructure, while also answering the needs of our planet to do it more sustainably.

The ability for a building to act as a climate solution is incredibly valuable. Mass timber locks in and stores carbon in a way traditional building materials don’t. As a society,  we are increasingly focused on the carbon and sustainability story associated with the buildings we build. With the building industry currently responsible for an estimated 20% of global emissions, mass timber is a climate game changer.

The Mass Timber Effect estimates that if we were to double the number of mass timber buildings built every year, the building industry could store more carbon than it emits by 2034.

 

 

Partners on this project include TimberLab, Swinerton, Weber Thompson, Spear Street Capital, DCI Engineers, and the Hess Callahan Grey Group. The Mass Timber materials were sourced our friends Kalesnikoff. This project also received a $250,000 Wood Innovation Grant from the U.S. Forest Service.

It is no wonder our friends and partners on this project and a climate-engaged workforce are looking to Mass Timber as an economic, social, and environmental solution. An innovative landmark, Northlake Commons elevates the human experience in the workplace, curating an building that brings professional and personal engagement together into a built environment that represents the future of city, of forests, and of our planet.

 

 

Climate Tech
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Mass Timber

Mass Timber + Affordable Housing

As our cities continue to grow, so do the challenges they face. Reimagine the way society lives, works, and plays by moving our cities from climate problems, to climate solutions.

Read this next
Climate Tech
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Mass Timber

Mass Timber + Affordable Housing

HEARTWOOD | A mass timber project feature

We recently explored the value of mass timber as a building solution with Jason McLin, director of real estate development finance for Community Roots Housing. The Heartwood project will bring workforce housing to central Seattle, filling a critical need for middle-income housing in the city. Equally critically, this project makes use of an innovative, eco-friendly building material (cross laminated timber or CLT), which lowers the overall carbon footprint of the structure. When completed, Heartwood is anticipated to be one of Washington’s tallest CLT buildings.

This is an exciting project with huge sustainability + climate implications.

By 2050, over 70% of us will live in cities. As our cities grow, so do our challenges: dependence on fossil fuels, non-recyclable waste, insufficient housing, and a growing disconnect with nature. Generating affordable housing is undoubtedly one of the construction sector’s greatest challenges. We need fresh solutions that are scalable, durable, energy-efficient, and promote well-being.

Fortunately, we have the power to reimagine our cities one building at a time.

Mass Timber is an essential product in our forest climate-solution toolbox that is helping us build better buildings, faster, and more sustainably. Mass timber - combined with light-frame construction - can deliver on value, longevity, speed of construction and flexibility. Mass timber helps us build faster and more efficiently, keeps carbon locked away, and allows us to provide homes that are good for people and planet.

Cities have long been labs for this type of innovation. So, even as our urban challenges continue to mount and grow in complexity, we are entering one of the most compelling opportunities in a generation to reimagine the way society lives, works, and plays. In transitioning our built environment from one that emits carbon to one that stores it, we are answering the needs of society for housing and infrastructure, while also answering the needs of our planet to do it more sustainably.

It is no wonder organizations like Community Roots Housing (CRH) - an affordable housing non-profit, based in Seattle, WA - are looking to Mass Timber as an economic, social, and environmental solution.

The ability for a building to act as a climate solution is incredibly valuable. Mass timber locks in and stores carbon in a way traditional building materials don’t. As a society,  we are increasingly focused on the carbon and sustainability story associated with the buildings we build. With the building industry currently responsible for an estimated 20% of global emissions, mass timber is a climate game changer.

The Mass Timber Effect estimates that if we were to double the number of mass timber buildings built every year, the building industry could store more carbon than it emits by 2034.

 

 

Partners on this film + project include Community Roots Housing, American Wood Council, TimberLab, Swinerton, and atelierjones llc. Materials sourced in part from Kalesnikoff + Freres. This project also received a $250,000 Wood Innovation Grant from the U.S. Forest Service to validate the feasibility of Type IV-C multifamily housing.

 

 

Reimagining Cities Illustration
Reimagining Our Cities
Biomass + Renewable Energy, Carbon + Climate Change, Careers, Cities, Forest Management, Innovation, Mass Timber, People, Products, Urban Forests

FORESTS: Reimagining Our Cities

For the first time in history, more than 50 percent of the world’s population lives in a city.

Watch this next
Natural Climate Solutions
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Innovation

Climate Resilience: An urban case study

ft. the Boise City of Trees Challenge - an ongoing story of community, collaboration, and forest climate solutions

Facing a changing climate and a rapidly urbanizing population, cities across the world are searching for solutions to turn the cities of the future into carbon repositories, not carbon problems. Frequently, trees are treated as an afterthought instead of an essential piece of the urban fabric. Not in Boise, Idaho.

The City of Boise is leading a new movement for community recovery and climate resiliency. While there is no single silver bullet for solving climate change, forests offer powerful carbon benefits and climate solutions. Long known as concrete jungles, it’s on us to fundamentally reimagine our cities, growing them into climate solutions, not part of the problem. The City of Trees Challenge, launched in partnership with the The Nature Conservancy (TNC) in Idaho, the Arbor Day Foundation, USDA Forest Service and Treasure Valley Canopy Network in 2020, has an ambitious goal: to plant 100,000 trees, one for every household in Boise, over the next 10 years.

That's one tree for every household in the city; one seedling for every person in the city. Why? Hear from Lance Davisson, Director of the Treasure Valley Canopy Network in this case study on urban climate resilience.

In Boise, climate action isn’t just an environmental issue. It’s a public health and economic development necessity. Climate change is continuing to shift the Treasure Valley's seasons, rainfall, snowpack, air quality and water availability. These changes impact the health, quality of life, and yes, the livelihoods of everyone in the city. By harnessing the power of trees as a climate solution, and the passion of the city’s residents, Boise is positioned to grow its urban forests, and showcase the true treasure of Treasure Valley: its trees.

“We’ve got to act now if we’re really going to impact climate change. And trees are such an important part of that,” says Elaine Clegg, Boise City Council President, in this inspiring film by #forestproud friends + partners at the collaborative US Nature4Climate.

Urban forests put trees to work for our cities, connecting people with outdoor spaces, sheltering wildlife, lowering urban temperatures, and driving climate resilience by storing carbon and filtering our air and water. One tree is needed to offset emissions for every 2 gallons of gas.

Urban forests are a scalable solution to today’s most pressing urban challenges. It’s essential that our urban trees grow alongside our cities. Collectively, our urban forests are climate solutions. It’s up to us to plant, steward, and build a climate resilience urban forest.

 


New to the urban forestry conversation? Wondering why urban trees are so critical to helping us reimagine our cities and rethink our carbon future?

Check our blog posts ft. urban forests:

Want to hear more from Lance?

Check out his podcast episode "To Tree, or Not To Tree - Important Projects to Protect Our Canopy & Climate and learn more about the critical role that urban trees play, now + tomorrow.

Reimagining Cities Illustration
Reimagining Our Cities
Biomass + Renewable Energy, Carbon + Climate Change, Careers, Cities, Forest Management, Innovation, Mass Timber, People, Products, Urban Forests

FORESTS: Reimagining Our Cities

For the first time in history, more than 50 percent of the world’s population lives in a city.

Watch this next
Climate Tech
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Innovation

Just add wood: a microscopic climate solution

To think big, we need to think small. Really small. Meet nanocellulose

Forests provide powerful climate solutions. As trees grow, they exchange oxygen for C02 and lock carbon away deep in their trunks, roots, and branches. But to fully understand the positive impact forests can have on our climate, we need to think smaller. Much smaller.

At a cellular level - one millionth the size of the head of a pin - are the microscopic building blocks of a tree. Cellulose is a basic building block of plant cells and is key to keeping plants and trees upright. (Think: those stringy bits in celery, but very, very small.) A single rod-like cellulose nanocrystal is the tiniest building block of wood. Each crystal is one hundred million times smaller than the head of a pin and can only be seen through a powerful scanning electron microscope. Nanocellulose – cellulose in its smallest microscopic form – has immense and untapped potential to create win-win solutions for people and planet. 

We envision a unique and sustainable future with this tiny yet mighty material revolutionizing fabrication technology and reducing our dependance on fossil fuels and non-renewable materials. These tiny fibers are as strong as steel, but only one-fifth the weight. Adding this next-generation material to products ranging from concrete, fiberglass and automobile tires to plastics, packing foams and electronic components, researchers are imagining and producing unique solutions to reduce greenhouse gas emissions in things we rely on every day, all while developing new ways to support renewable, circular bio-economies.  

When incorporated into other materials, nanocellulose lends incredible strength, requires less emissions-intensive material, and drives innovations that help design waste out of an already-efficient sustainable forest management cycle

Because of their structures, nanocellulose materials also have a high rate of biocompatibility - meaning they can easily be added to, or combined with, other materials. In other words, we can take the climate powers of trees and add them to non-tree materials. They can be added to concrete and steel to make them stronger and lighter, and to plastics, clothing, and electronic components to make them infinitely more sustainable. As we collectively search for answers to climate change, nano-materials hold enormous potential in helping us make essential products stronger and more sustainable for people and planet.  

Thankfully it’s happening not a nanosecond too soon.

The USDA Forest Service, Oregon State University, Siskiyou County, California, and the US Endowment teamed up to test a nanocellulose additive to concrete aimed at reducing greenhouse gas emissions. The Yreka Bridge shows how adding Cellulosic Nanocrystals to a concrete mix can reduce the amount of cement in a standard concrete mix. This reduction in cement saves a considerable amount of CO2 emissions, makes concrete lighter and more durable - and it also stores carbon in the concrete.  

By adding nanocellulose to concrete, it’s possible to improve its strength and help shift an essential building material like concrete from being a carbon problem to a being a carbon solution. More at https://woodisthenewconcrete.com/ 

Want more science? Get the data here and here and here and here

Film by Inland Film Co.

Reimagining Cities Illustration
Reimagining Our Cities
Biomass + Renewable Energy, Carbon + Climate Change, Careers, Cities, Forest Management, Innovation, Mass Timber, People, Products, Urban Forests

FORESTS: Reimagining Our Cities

For the first time in history, more than 50 percent of the world’s population lives in a city.

Watch this next
Climate Tech
Reimagining Our Cities
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products, Mass Timber

A climate solution hidden in plain sight

The story of the Hidden Creek Community Center

They say good things come to those who wait. And for Hillsboro, Oregon nothing could be closer to the truth. After years of planning and several intense months of construction, the town opened its doors to a brand new community center this month.

At more than 51,000 square feet, with exposed wood beams that extend some ninety feet long, the Hidden Creek Community Center is among the first buildings of its kind, using mass timber technology -  massive engineered wood beams and structural panels - in place of traditional, nonrenewable, construction materials like concrete and steel.

You only have to look at its sleek design to know that the building offers state-of-the-art facilities and public space, but what really makes this building special - and arguably, what really makes every mass timber building special - is that in addition to working for the community by providing critical infrastructure, this building is also working for the planet as a powerful climate solution.

When we first heard this we had a million questions. So many in fact, that we actually called up Swinerton Mass Timber - the company who built the community center - and talked to William Silva, Director of Pre-Construction, and asked him to lay it all out for us.


When the City of Hillsboro called you, were they looking for a climate solution?

We were working on the First Tech Federal Credit Union Corporate Offices which was the first project to bring mass timber to the Portland suburbs. And when we finished it in 2018, it was the largest mass timber project in the United States.

During the construction, Hillsboro’s City Manager and staff visited the site and saw what mass timber could do, particularly when the right project team was assembled.  The City Manager directed his staff to explore mass timber as a potential option for the Hidden Creek Community Center.

Serving the community has always been a primary function of the City of Hillsboro and the use of mass timber for their new community center fit perfectly with that mission as it provides a connection to nature, a beautiful space for users, and a building that stores carbon rather than emits it.

So yes, I think that they were looking for the best option for their community.

Why did Hillsboro choose mass timber over concrete or steel?

There were many options on the table. A steel structure would have certainly met the physical requirement for the space, but mass timber provides so many additional benefits, that the community really saw value in.

From the design team to the engineers, the whole project team was really committed to creating a space that connected the community and upheld the goals of working towards a more sustainable future. One of the goals of the City of Hillsboro is: “...to envision a sustainable future, in which the City responsibly satisfies the needs of its residents, provides a healthy and satisfying work environment for its employees, and minimizes its impact on the physical environment of the community.”

So in that sense, choosing mass timber as the primary structural solution, was perfectly in line with their mission and sustainability plan.

What makes mass timber the perfect choice for a community center?

As you stand in the gymnasium looking at the 90 foot long glulam beams, it’s hard not to stare out the windows at the Douglas Fir trees on the other side of the glass and instantly make that connection to nature. Given the natural forests surrounding the area, mass timber was the perfect option to connect the community center with the landscape of the community.

Using mass timber is also a nod to the state’s rich timber history.  Oregon has been home to sustainable forestry for years and so this building pays homage to those roots, though with a slightly modern twist. A lot of the material was locally sourced for the glulam beams and columns, and so this project connects with the community in more ways than one. We hope it will stand as a testament to the future of the timber industry in Oregon.

How do the benefits or advantages of mass timber translate into solutions for societal challenges?

There are so many additional advantages to mass timber construction over other materials. In terms of timing, our team was able to deliver the building 4 months faster than traditional steel construction, including overcoming permit delays so that the Community Center could open for fall programs.

I’d also say that with everything going on in the world right now, health and wellbeing have increased prominence in society today.  The exposed mass timber structure provides a natural atmosphere for residents to enjoy as they utilize the space and studies have shown that working, living, and even recreating in spaces which connect you to the natural environment help reduce stress and lower blood pressure.

As a building material, mass timber has massive potential to spur a green building initiative that encourages sustainability and cost advantages. The use of mass timber in the Hidden Creek Community Center is just one example of the larger trend to utilize natural products - like mass timber - for a range of benefits.

It seems more and more companies, organizations, towns are setting sustainability goals. Where does mass timber fit in helping achieve these goals?

There are many advantages to mass timber helping to achieve the sustainability goals of companies and communities. The ability to use products grown, harvested, processed, and built in a region promotes a sustainable ecosystem which can have a net positive benefit for the carbon cycle. The future of buildings will include more sustainable solutions, and mass timber is a really, really powerful tool that can help us do that.

Let’s talk about carbon and sustainability. How can buildings be climate solutions?

The ability for a building to act as a climate solution is incredibly valuable.

Mass timber locks in and stores carbon in a way traditional building materials don’t. Owners and architects are increasingly focused on the carbon and sustainability story associated with the buildings we build.  Every time we build a mass timber building our clients lead with the sustainability facts for the building - how much carbon it stores, how many cars off the road, etc. It is exciting to know that the building doesn’t just work, and isn’t just beautiful, it has a real positive environmental impact and people are excited about that.


original article written for Smart Cities Dive

Reimagining Cities Illustration
Reimagining Our Cities
Biomass + Renewable Energy, Carbon + Climate Change, Careers, Cities, Forest Management, Innovation, Mass Timber, People, Products, Urban Forests

FORESTS: Reimagining Our Cities

For the first time in history, more than 50 percent of the world’s population lives in a city.

Watch this next
Climate Tech
Rethinking Our Carbon Future
Carbon + Climate Change, Forest Management, Forest Products

The 5 Flavors of Climate Denial

" it's not real, it's not us, it's not bad, it can't be fixed, and it's too late.”

Climate change denial is not new. In fact, for the better part of the last 20 years, there has been a growing body of misinformation that has shaped - and successfully slowed - the climate change debate.

Professor Katharine Hayhoe, Chief Scientist for The Nature Conservancy, has long talked about this misinformation as the “5 Flavors of Climate Denial: it's not real, it's not us, it's not bad, it can't be fixed, and it's too late.”

(Click To See Full Taxonomy)

Turns out, she was mostly right.

New research, published in the Scientific Reports Journal last November, used computational modeling to analyze and map contrarian claims about climate change over the last two decades. The result was a first of its kind comprehensive taxonomy of climate contrarianism (try saying that 5x fast!).

It found that there are indeed 5 major categories for climate denial that track very closely to Professor Hayhoe's initial assessment, though "fear of it being too late" was replaced by a belief around climate science being unreliable:

  1. It’s not happening
  2. It’s not us
  3. It’s not bad
  4. Solutions won’t work
  5. Climate science is unreliable

Why This Matters.

The spread of misinformation has lead to a number of negative outcomes including reduced climate literacy, public polarization, reinforcing climate silence, etc.

Over the last several years, the forest sector has actively embraced and elevated the carbon and climate benefits of forests and forest products to a core tenet of what it does and why it does it. (#forestproud itself focuses exclusively on forest climate solutions as provided collectively by forests, forest management, and forest markets and products.)

Understanding this landscape and where climate deniers fit into it is critical to ensuring communication efforts resonate with the majority of Americans who believe climate change is happening (see our note from January 2022), and also effectively break down - or anticipate - obstacles that are designed to slow or stop that work.

Skeptical Science - a non-profit science organization focused on raising the public's understanding of climate change - has a dynamic list of 200+ climate change myths with talking points linked to the latest scientific data that disproves them.

It tracks closely to the climate contrarianism taxonomy model and is a fantastic resource we use regularly in our work engaging 18-34 year olds, beyond the sector, who care about climate change and want to understand the crucial link between forests and climate solutions.

These tools alone are not going to win over climate deniers. But understanding what the playing field looks like as we continue to champion forests and forest products as the key to rethinking our climate future is an increasingly important part of that puzzle.

- The #forestproud team

Reimagining Cities Illustration
Reimagining Our Cities
Biomass + Renewable Energy, Carbon + Climate Change, Careers, Cities, Forest Management, Innovation, Mass Timber, People, Products, Urban Forests

FORESTS: Reimagining Our Cities

For the first time in history, more than 50 percent of the world’s population lives in a city.

Watch this next